Variational bayesian approach for model aggregation in non-supervised classification

Stevenn Volant

AgroParisTech, UMR 518 MIA

June 1, 2010
Table of contents

1. Context
2. Optimal variational weights
3. Other weights
4. Inference of f_m
5. Simulation study
Multiple testing: local FDR

Question: Is gene G differentially expressed under specific conditions?
⇒ Multiple testing, local FDR (False Discovery Rate).

Mixture models
Tiling array

1. Provides a measure of the expression for each probe
2. Dimension: 10^4 to 10^6

2 kind of probes:
- Expressed: High or middle intensity
- Non expressed: Low intensity near from 0 ⇒ easily recognisable

Spatial dependence: A adjacent probe of an expressed probe is more likely to be expressed (and vice versa). ⇒ HMM
We consider a mixture between two populations:

\[g(x) = Sf(x) + (1 - S)\phi(x) \] \hspace{1cm} (1)

where \(S \) equals 1 if \(x \) belongs to \(f \) and 0 otherwise. The density function \(\phi \) is known and \(f \) must be adjusted.

The variable \(S \) is either distributed as a \textbf{Multinomial} or a first order \textbf{Markov Chain}.
We are interested in the posterior distribution of S:

$$P(S|X) = \int P(S, \Theta|X) d\Theta,$$

where Θ is the vector of parameters.

Many models can be considered for the estimation of $P(S|X)$. However,

- Each model brings some information
- Select one specific model is not judicious

\Rightarrow Use an aggregated estimator which combines all the models.
Model averaging (2/2)

<table>
<thead>
<tr>
<th>Estimators</th>
<th>Weights</th>
<th>Aggregated estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{P}^{(1)}(S</td>
<td>X)$</td>
<td>$\tilde{\alpha}_1$</td>
</tr>
<tr>
<td>$\hat{P}^{(2)}(S</td>
<td>X)$</td>
<td>$\tilde{\alpha}_2$</td>
</tr>
<tr>
<td>$\hat{P}^{(3)}(S</td>
<td>X)$</td>
<td>$\tilde{\alpha}_3$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$\hat{P}^{(m)}(S</td>
<td>X)$</td>
<td>$\tilde{\alpha}_m$</td>
</tr>
</tbody>
</table>

Objective: Estimate α_m.

Jaakkola and Jordan (1998) proved that combining models provided better results than selecting only one model in \mathcal{J}.

$$\min KL(Q_{\text{aggre}}(S)||P(S|X)) \leq \min KL(Q_m(S)||P(S|X))$$

Problem:

The quantity $\min KL(Q_{\text{aggre}}(S)||P(S|X))$ is hard to calculate.

Shift the original problem:

Instead of minimising $KL(Q(S)||P(S|X))$, we focus on the minimisation of

$$KL(Q(S, M)||P(S, M|X))$$
Table of contents

1. Context
2. Optimal variational weights
3. Other weights
4. Inference of f_m
5. Simulation study
Minimisation of the Kullback-Leibler divergence (1/2)

In the bayesian framework, the natural weights are based on:

\[P(M|X) = \int P(S, \Theta, M|X) dSd\Theta \]

with \(M \) the model.

Theorem

Let \(M \) be a random variable, distributed as a multinomial with parameter \(r \), it yields:

\[M \sim \mathcal{M}(1, r) \quad \text{with} \quad P(M = m) = r_m. \]

We denote by \(\tilde{\alpha}_m \) the posterior distribution of the variable \(M \) obtained by the minimisation of \(KL(Q(S, \Theta, M|X)||P(S, \Theta, M|X)) \). Hence,

\[\tilde{\alpha}_m = \int Q(S, \Theta, M|X) dSd\Theta \propto r_m e^{-KL(Q(S,\Theta|m)||P(S,\Theta,X|m))}. \]
Minimisation of the Kullback-Leibler divergence (2/2)

Proof.

\[
KL(Q(H, M) || P(H, M|X)) = \int \int Q(H, M) \log \frac{Q(H, M)}{P(H, M|X)} dHdM
\]

\[
= \int \int Q(H|M)Q(M) \log \frac{Q(H|M)Q(M)P(X)}{P(H, M, X)} dHdM
\]

\[
= \int KL(Q(H|M) || P(H, X|M))Q(M)dM - E(Q(M))
\]

\[
+ \log P(X) - \int \log P(M)Q(M)dM
\]

\[
= \log P(X) + \sum Q(m) [KL(Q(H|M) || P(H, X|M))
\]

\[
+ \log Q(m) - \log P(M)]
\]

where, \(E(X) = -\int X \log X dX \).

The minimum is obtained with Lagrange multipliers, i.e. we minimize the functional

\[
KL(Q(H, M) || P(H, M|X)) - \lambda(\sum Q(m) - 1)
\]
Interpretation of the theorem

Other writing of the theorem

\[\tilde{\alpha}_m \propto r_m e^{-KL(Q(S, \Theta | X, m) || P(S, \Theta | X, m))} \]
\[\propto r_m e^{-KL(Q(S, \Theta | X, m) || P(S, \Theta | X, m)) + \log P(X | m)} \]

True weights

If \(KL(Q(S, \Theta | X, m) || P(S, \Theta | X, m)) = 0 \), then \(\tilde{\alpha}_m = P(m | X) \)

Consequence

We want to minimise \(KL(Q(S, \Theta | X, m) || P(S, \Theta | X, m)) \)

- VBEM algorithm for the bayesian case
- EM algorithm for the frequentist case
Table of contents

1. Context
2. Optimal variational weights
3. Other weights
4. Inference of f_m
5. Simulation study
The true distribution is given by:

\[
P(M|X) = \frac{P(M)}{P(X)} P(X|M)
\]

\[\propto \int P(X, \Theta|M)P(\Theta)d\Theta.\]

The integral is then estimate by:

\[
\hat{\alpha}_m \propto \frac{1}{B} \sum_{b=1}^{B} P(X, \Theta^{(b)}|M = m), \tag{2}
\]

avec \(\Theta^{(b)} \sim iid P(\Theta)\).

Problem: The variance is very high

Solution: Modified the distribution \(P(H)\) in order to speed up the convergence and reduce the variance \(\Rightarrow\) Importance Sampling
We have:

\[P(M|X) \propto \int \frac{P(X, \Theta|M)P(\Theta)}{G(\Theta)} G(\Theta)d\Theta. \] (3)

The function \(G(\Theta) \) represents the importance function.

\[\hat{\alpha}_m \propto \frac{1}{B} \sum_{b=1}^{B} \frac{P(X, \Theta^{(b)}|M=m)P(\Theta^{(b)})}{G(\Theta^{(b)})}, \] (4)

with \(\Theta^{(b)} \sim_{iid} G(\Theta) \)

Remarks

- Provides an estimation of the posterior distribution \(P(M|X) \).
- Reduces the variance of \(\hat{\alpha}_m \) for a good choice of \(G \).
- The higher \(B \), the more accurate the estimation is.
Two natural choices of function for $H = \Theta$.

- The posterior distribution of the VBEM algorithm $Q_V(\Theta)$
- The asymptotic normal distribution of the parameters with mean $\hat{\Theta}$ and the variance-covariance calculated from the Fisher information matrix $\mathcal{N}(\hat{\Theta}, \mathcal{I}^{-1})$

\[
\mathcal{I}(\Theta, x) = \mathbb{E} \left[-\frac{\partial^2}{\partial \Theta \partial \Theta^T} \mathcal{L}(X, \Theta) \right].
\] (5)

- Is there an optimal choice of G ?
Chibs’ weights

Chib’s method is a direct application of the Bayes theorem, we have:

$$\forall \theta, P(X|M) = \frac{P(X|M, \theta)P(\theta|M)}{P(\theta|X, M)},$$

(6)

- We choose θ as the posterior mean of Θ, $\theta^* = \mathbb{E}(\Theta|X)$.
- $P(\theta^*|X, M)$ is approximated by the distribution $Q(\theta^*|X, M)$.
Table of contents

1. Context
2. Optimal variational weights
3. Other weights
4. Inference of f_m
 - Mixture Models
 - HMM
5. Simulation study
f_m as a mixture density

We consider f_m as a mixture of K_m Gaussian distributions.

$$f_m(x) = \sum_{k=1}^{K_m} p_k \phi_k(x) \quad \text{with} \quad \sum_k p_k = 1$$

Hence,

$$g_m(x) = \sum_{k=0}^{K_m} \pi_k \phi_k(x) \quad \text{with} \quad \sum_k \pi_k = 1$$

Then, we denote by Z_i the label of observation i:

$$Z_i = k \quad \text{if} \quad i \in k$$

These variables are distributed as:

- multinomial, it is a classical mixture model with independent latent variables.
- Markov chain, it is a HMM (Hidden Markov Model) with spatially dependent latent variables (with a specific transition matrix).
The class of interest is modelled by a standard gaussian distribution.

The alternative is fitted by a 3-components gaussian mixture.
Divide the problem: proposition

Proposition

\[
\text{Minimise } KL(Q(S, \Theta|X, M)||P(S, \Theta|X, M)) \\
\text{is equivalent to} \\
\text{Minimise } KL(Q(Z, \Theta|X, M)||P(Z, \Theta|M, X)).
\]

Interpretation

- We can divide the problem into easier sub-problems.
- It is more convenient to use \(Z \) rather than \(S \).

Objective: Minimise \(KL(Q(Z, \Theta|X, M)||P(Z, \Theta|M, X)) \)
We want:

$$\text{Argmin} \, KL(Q(\Theta, Z) \| P(\Theta, Z|X))$$

The minimum is obtained for $Q(\Theta, Z) = P(\Theta, Z|X)$.

Problem: We must know the marginal likelihood to calculate $P(\Theta, Z|X)$.

\Rightarrow We consider a distribution Q_V define by:

$$Q_V(\Theta, Z) = Q_\Theta(\Theta) \times Q_Z(Z).$$
Prior distributions: Normal inverse-gamma model

Hypothesis on latent variables

We suppose that latent variables are independent and:

\[Z_i \sim \mathcal{M}(1; \pi), \]

and,

\[Q_Z(Z) = \prod_i P(Z_i) \]

Prior distributions

Data are distributed as a mixture of \(\mathcal{N}(\mu_k, \frac{1}{\lambda_k}) \).

We consider a particular class models, which are called conjugate-exponential (CE) models (Beal et Ghahramani (2003)):

- \(\pi \sim D(p_0, \ldots, p_{K-1}) \) \Rightarrow Proportions
- \(\mu_k \sim \mathcal{N}(m, \frac{1}{t \times \lambda_k}) \) \Rightarrow Means
- \(\lambda_k \sim \Gamma(a, b) \) \Rightarrow Precision
Figure: The VBEM steps

source: Beal thesis
Prior distributions

Hypothesis on latent variables

We suppose that:

$$Q_Z(Z) = \prod_i P(Z_i|Z_{i-1})$$

Prior distributions

We denote by $\Pi = \{\pi_{kj}\}_{k=0\ldots K-1,j=0\ldots K-1}$ the transition matrix:

$$\pi_{kj} = P(Z_{t+1} = j|Z_t = k).$$

- $\pi_k \sim D(p_1^{(k)}, \ldots, p_K^{(k)}) \Rightarrow$ Transition matrix
- $\mu_k | \lambda_k \sim N\left(m, \frac{1}{t \times \lambda_k}\right) \Rightarrow$ Mean
- $\lambda_k \sim \Gamma(a, b) \Rightarrow$ Precision
"Step E:" \(Q_Z(Z) \)

\(Q_Z(Z) \) is obtained via a forward-backward algorithm.

"Step M:" \(Q_\Theta(\Theta) \)

It is the same M step for the VBEM and the VB-HMM algorithms.
Table of contents

1. Context
2. Optimal variational weights
3. Other weights
4. Inference of f_m
5. Simulation study
Design

- Simulate a mixture of a $\mathcal{U}[0, 1]$ and a β-distribution or a \mathcal{U}-distribution.
- Apply a probit transformation.
- Choose 4 transition matrix and 4 different parameters for the alternative distribution.

- Simulate $S = 100$ datasets of size 100
- We compare the optimal variational weights and Chib’s weights to the IS approach.
- We calculate the RMSE between the theoretical distribution of S and its estimation.
The next figure displays the Hellinger distance between the estimated weights (Uniform simulation case).
RMSE

Context
Optimal variational weights
Other weights
Inference of f_m
Simulation study
Conclusion

The optimal weights are closer to the true weights than Chib’s ones.
The RMSE highlights promising results for model averaging.

Perspectives

Application of the method on transcriptional dataset.
Extension to HMRF (Hidden Markov Random Fields)